-—— .

AD=A056 725 STATE UNIV OF NEW YORK AT BUFFALO AMHERST STATISTICA--ETC F/6 12/1
* MAXIMUM ROBUST LIKELIHOOD ESTIMATION. (U)
JUL 78 E PARZEN DAA629-76-G-0239
UNCLASSIFIED ARO-13845,.2

END

DATE M|
FILMED

9-78 !

nbe




Lo & i 2=

rrere

22 s wee

MICROCOPY  RESOLUTION  TEST CHARL
NATIONAL  BUREAU OF STANDARD N \




_Unclassified !
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) - -'

READ INSTRUCTIONS
- R ) ION PAGE BEFORE COMPLETING FORM 721 9

) . o~ RE . o RECIPIENT'S CATALOG NUMBER
e ‘"U’ "ﬂm r lEmlI/ ) a

JITLE (and Subtitie)f L.,
wd Final ep-tf' ’
lMaximum Robust Likelihood Estimation , j/ ‘ 5Jun 76 £ 31 Jul 78

? THOR(e) 8. CONTRACY OTGRA“T NUMBER(s)
0 uel‘ Finsen \ DAAG29-¥6—0—4239 X/

29

Al

" 5. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK ’
@ AREA & WORK UNIT NUMBERS |
State University of New York, Buffalo 5
m Amherst, New York 14226 ) p T f
o 11. CONTROLLING OFFICE NAME AND ADDRESS EPORT DATE // ;
U. S. Army Research Office !
< P. 0. Box 12211 M
Research Triangle Park, NC 27709 10 f

2 V4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling ing Office) | 1S SECURITY CLASS. (of this report) ! |

! le l F unclassified

1Se. DECLASSIFICATION/DOWNGRADING
scueo \.:

16. DISTRIBUTION STATEMENT (of thie Report) D

Approved for public release; distribution unlimited. \[c mrpﬂﬂlﬂp
JUL 26 1978

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, ! different trom R.poﬂ) H “ j\\@ lj U U I:SI_J '

s

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official

Department of the Army position, unless so designated by other authorized
documents.

: coptj

73

DDB AL

19. KEY WORDS (Continue on reverse side Il necessary and identily by block number)

(

—— .l)j.lTﬂACT (Continue on reverse slde If necesesary and Identify by block number)

After a statement describing the over-all goals and personnel of this

research project, this final report contains: a list of technical reports

on research supported by this project, and a description of research

accomplishments as given in the abstracts or introductions of the technical

reports which have been issued. <. = , 5
AQ Q

oE . o

ford o f
class1f1ed *

ANt PN ————
“ » ’ B

ooy 1473 eoimion oF 1 nOv 68 1s oBsOLETE

A 5
k. A




MAXIMUM ROBUST LIKELIHOOD ESTIMATION
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Introduction

After a statement describing the over-all goals and personnel of
this research project, this final report contains: a list of technical reports
on research supported by this project, and a description of research
accomplishments as given in the abstracts or introductions of the technical
reports which have been issued.

Goals

This research has developed a general approach to statistical data
analysis (in particular to non-parametric statistical data modeling and to
robust analysis and modeling of statistical data, including the one-sample,
two-sample, bivariate-sample and multivariate-sample cases).

The new results being obtained seem to be attracting wide interest:
(1) Professor Parzen's paper '"Nonparametric Statistical Data Modeling"
is a major invited address at the August 1978 Annual Meeting of the
American Statistical Association and will be published with discussion in
the December 1978 issue of the Journal of the American Statistical
Association; (2) Professor Parzen's paper "A Density-Quantile Function
Perspective on Robust Estimation'' was given at the April 1978 ARO
Symposium on Robust Estimation and will be published in its proceedings.
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Personnel
The following faculty have worked on this research project:
Emanuel Parzen
Marcello Pagano
H. Joseph Newton
Jean-Pierre Carmichael
The following Ph. D. students have worked on this research
project:
David Trichtler
Michael White
Technical Reports
Date and
Author Title Report No.
Emanuel Parzen Nonparametric Statistical Data January 1977
Science: A Unified Approach 47, ARO-1
Based on Density Estimation
and Testing for '""White Noise'"'
Jean-Pierre Carmichael, New Nonparametric Approach July 1977
Emanuel Parzen to the Two Sample Problem 56, ARO-2
Emanuel Parzen Nonparametric Statistical Data  January 1978
Modeling 59, ARO-3
Emanuel Parzen A Density-Quantile Function March 1978
Perspective on Robust 60, ARO-4
Estimation
Jean-Pierre Carmichael Techniques of Quantile June 1978
ARO-5

A publication on research originating from support by this ARO
project is: Marcello Pagano (1977), ""An Approach to Time Series Pre-
diction." Proceedings of the Computer Science and Statistics Tenth Annual

Symposium on the Interface.
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NONPARAMETRIC STATISTICAL DATA SCIENCE:

A UNIFIED APPROACH BASED ON DENSITY ESTIMATION
AND TESTING FOR "WHITE NOISE"

by

Emanuel Parzen

The aim of this paper is to introduce a single canonical problem to
which one can transform many basic statistical inference and statistical
data analysis problems. This canonical problem is most simply described

as the problem of testing for white noise via density estimation or

smoothing, We first state some of the inference problems which we seek
to unify.

One-sample (univariate) inference problems. Let Xl' ey Xn

be i.i.d. (independent identically distributed) random variables with common
a.c. (absolutely continuous) d.f. (distribution function) F(x) and
probability density function f(x) . One seceks to efficiently:

(i) estimate f(x) non-parametrically (without making any
prior assumption about its functional form)

(ii) test for a specified probability density fo(x) whether there

exists constants M and ¢ such that

w0 - by () L mw - (55)

(iii) estimate the parameters 4 and ¢ (called location and

scale parameters).
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Two-sample (univariate) inference problems. Let Xl. e Xm

be i.i.d. with common a.c. d.f. F(x) and let Yl' Ssn 'Yn be i.i.d.
with common a.c. d.f. G(x) . One seeks to efficiently:

(i) test whether there exists constants @ and ¢ such that

(ii) estimate W and © .

One-sample multivariate inference problems. Let |[
l

I
"

be a random vector with absolutely continuous multivariate distribution ]
function F(xl. e .xd) and density f(xl. 5 ,xd) ; let _)_(_l, S .2(_n
be a random sample., One seeks to efficiently:

(i) test whether the components Xl, voep Xd are independent

random variables,

(ii) estimate the multivariate density ; S

(iii) estimate the regression function

Mxpaeeonxg () = E[XGIX) = X000, Xg ) = x5, -

In addition, there are multi-sample univariate inference problems

and multi-sample multivariate inference problems concerned with the equal-

ity of many distributions; however, they are not discussed in this paper.




NEW NONPARAMETRIC APPROACH TO THE
TWO-SAMPLE PROBLEM

by
Jean-Pierre Carmichael
and

Emanuel Parzen

ABSTRACT

Given two random samples (X ,..., Xm) and (Yl’ Dok Yn) »

1
we want to test the hypothesis that Fx(°) = FY(°) . There are different

possible alternatives. Here we are mostly concerned about change of

location;
FY(x) = Fx(x— (V)

In Chapter 1, we review the classical parametric and non-para-
metric procedures that are currently used. In Chapter 2, we introduce
some new test statistics obtained from Parzen's new formulation of the
problem (1977). In Chapter 3, we present the results of simulations
comparing these different procedures on a wide range of underlying dis-
tributions. In Chapter 4, we document the use of a computer package

developed here, including some new graphical displays.
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NONPARAMETRIC STATISTICAL DATA MODELING
by

Emanuel Parzen

Introduction

It is the aim of this paper to introduce new types of keys for
exploratory data analysis (of continuous data) based on estimating the

quantile function and density quantile function., It appears that this

approach leads to an exploratory data analysis which has a firm prob-
ability base. Consequently the distinction between exploratory and
confirmatory data analysis can be regarded as a distinction between

confirmatory non-parametric statistical data analysis or modeling, and

confirmatory parametric statistical data analysis,

The basic proposition of this paper is that exploratory data analysis
and conventional parametric statistical inference both have as their aim
the estimation of the quantile function Q(u) , 0€usx<]1 , of a random
variable X of which the data Xl' ceve X“ are independent (or dependent)

observations., To estimate Q , one assumes a representation for it of

the form
Q(u) = M+ OQo(u) .

which is equivalent to the classic location and scale parameter model for

\
the probability density function: f{(x) = -cl- ‘O(X—_O_E) . We call this




representation hypothesis Ho . One can distinguish four stages of this |

model.

I. Parametric model: one assumes Q0 known, Then one's

aim is to estimate N and 0 . One uses either maximum likelihood
estimation or optimal linear combinations of order statistics.

II. Goodness of fit: one cests "0 for various specifications of

Qo (corresponding to the familiar probability laws, such as normal,
exponential, logistic, Weibull, Pareto, Cauchy, and so on).

III. Robust parametric model: Q  is specified by specifications

0

which permit simall deviations from an Ideal Model, such as "QO

symmetric and possibly long tailed'" or "Q0 normal except for con-

tamination by outliers, "

IV. Non-parametric model: estimate Q0 , either by estimating

the density quantile function {Q(u) = f (Q(u)) , or through suitable plots
of the sample quantile functions of transformations of the data,

The main aim of this paper is to introduce a '"density estimation"
approach to Goodness of Fit tests which also yields estimations of Q

To a specified hypothesis H_ ; Q(u) = 1 + OQO(\\) , one can define a

0

density d(u), 0s=usl , suchthat H, is equivalentto d(u)®1 .

0

Estimation of d(u) provides a test of Ho and also an estimator of the

true fQ function when Ivlo is rejected. Many density estimation

methods are available; we believe the "autoregressive' method works

best for small samples, and we describe it in detail. '
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A DENSITY-QUANTILE FUNCTION PERSPECTIVE
ON ROBUST ESTIMATION

by

Emanuel Parzen

A perspective on robust estimation is discussed, with three broad
sets of conclusions. Point I: The means must be justified by the ends.
Point II: Graphical goodness-of-fit procedures should be applied to data
to check if they are adequately fitted by the qualitatively defined models
which are implicitly assumed by robust estimation procedures. Point III:

There is a danger that resecarchers may regard robust regression pro-

cedures as a routine solution to the problem of modeling relations between
variables without first studying the distribution of each variable.

New tools introduced include: Student's window; Quantile-Box
Plots; density-quantile estimation approach to goodness-of-{it tests;
and a definition of statistics as "arithmetic done by the method of

Lebesgue integration, "
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TECHNIQUES OF QUANTILE REGR ESSION
by

Jean-Pierre Carmichael

Introduction

Given observations [(Xi, Yi)' i=1,...,n} on random variables
(X, Y) with joint distribution FX. Y(x, y) ,» we want to estimate the
regression functionof Y on X , E{Yl X = x] , nonparametrically,

In order to find a natural estimator (simple computationally and
intuitively appealing), Parzen (1977) developed the following theoretical

approach,

1. Theoretical Approach:

Let Ul = FX(X) and U2 = FY(Y) , then the joint distribution

of Ul and Uz is

Dul.uz‘“n"‘z’ = Fx.\'(ox(“l)' °y‘“z’)

and their joint density is

i s ):_f_)_(gY(QX(“l)' QY‘“:’)
U,U, 1N fx'\ox(u,) ‘Yoy“’z’)

l.
where Fz is the distribution function of 2
fz is its density function
Q is its quantile function

Z




Let r(x) be the regression functionof Y on X =1x .

o Y Iy (X y)dy
r(x) = E[Y|X =x]= [ xf Y(x)
X

We now define the regression-quantile function rQ (+) by

rQ(u) = r(Qy(w) = E[Y|X = Qy(w)]

How do we compute rQ(+) ?

By definition,

T R TR

= fﬂ y fX, Y(QX(U).V dy)
o) = e fx(@x ™)

Let y = QY(uZ) , then

rQ) = [ Qy(u,) dUl.U (w,u,) du,

2

Al

If we introduce a Dirac delta function, we can express rQ(+) as a

double integral

1.1 rQu) = [ fg Qqtu,) b, -wd Dy

(u,,u
12l

2)

We estimate rQ(+) by

3 114 1 o Tt
R i) = J‘0 -rO QY(“Z) h(n) o ( h(n) )d DUI. Uz(ul'“Z) i




